EOTECH
 more for science

Minisurf

Ex-vivo 3D imaging system for micro-surfaces analysis

Product description

Technology MiniSURF is a full field optical profilometer, based on phase shifting interferometry. This microscope combines a black and white camera, a 50 x high end interferometric lens, a LED light source and a high accuracy piezo electric motor. The optical head is mounted on a robust colum fixed on a passive antivibration table.

Main features No sample preparation is required. Being based on non contact techniques, it is a non destructive measurement. Its unique analysis algorithm provides both contrast images and calibrated surface measurements and especially roughness parameters according to linear profiles, making it a perfect tool for hair surfaces state measurement.

Sofitware The MiniSURF software will guide the user to acquire the surface structure, and will calculate parameters like profiles and surface roughness, structure porosity and other parameters. The software allows to visualize contrast image and surface topography with stuning rendering, in order to illustrate clinical studies and to support the associated cosmetic claims for hair care products.

Applications

Single hair measurement:

Cosmetic claims:

- Illustrations
- Scale and damages

Gloss

Repair

Advantages/benefits:

Smoothing
Compact device
Cost effective solution
Non destructive
Quantitative and qualitative results
All-in-one software

Technical data

Contrast

Profiles roughness

Rendering

System specifications

Features
Illumination Camera XY range Z range Focus range Weight$\quad 1456 \times 1088$ pixels (1.6 Mp)
Size $(L x H \times P)$

Imaging specifications

Characteristics	Value
Magnification	50 X
Measurement surface $\left(\mu \mathrm{m}^{2}\right)$	160×120
Working distance (mm)	3.4
Optical resolution $(\mu \mathrm{m})$	0.5
Lateral sampling ($\mu \mathrm{m})$	0.11
Standard Z resolution $(\mu \mathrm{m})$	0.05

Contact

